首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   346篇
  免费   23篇
  国内免费   20篇
  2024年   1篇
  2023年   9篇
  2022年   6篇
  2021年   18篇
  2020年   16篇
  2019年   20篇
  2018年   14篇
  2017年   9篇
  2016年   13篇
  2015年   10篇
  2014年   18篇
  2013年   34篇
  2012年   12篇
  2011年   10篇
  2010年   15篇
  2009年   19篇
  2008年   19篇
  2007年   28篇
  2006年   9篇
  2005年   18篇
  2004年   9篇
  2003年   9篇
  2002年   13篇
  2001年   7篇
  2000年   9篇
  1999年   3篇
  1998年   4篇
  1997年   5篇
  1996年   6篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有389条查询结果,搜索用时 468 毫秒
1.
1. Echo delay is the primary cue used by echolocating bats to determine target range. During target-directed flight, the repetition rate of pulse emission increases systematically as range decreases. Thus, we examined the delay tuning of 120 neurons in the auditory cortex of the bat, Myotis lucifugus, as repetition rate was varied. 2. Delay sensitivity was exhibited in 77% of the neurons over different ranges of pulse repetition rates (PRRs). Delay tuning typically narrowed and eventually disappeared at higher PRRs. 3. Two major types of delay-sensitive neurons were found: i) delay-tuned neurons (59%) had a single fixed best delay, while ii) tracking neurons (22%) changed their best delay with PRR. 4. PRRs from 1-100/s were represented by the population of delay-sensitive neurons, with the majority of neurons delay-sensitive at PRRs of at least 10-20/s. Thus, delay-dependent neurons in Myotis are most active during the search phase of echolocation. 5. Delay-sensitive neurons that also responded to single sounds were common. At PRRs where delay sensitivity was found, the responses to single sounds were reduced and the responses to pulse-echo pairs at particular delays were greater than the single-sound responses. In facilitated neurons (53%), the maximal delay-dependent response was always larger than the best single-sound responses, whereas in enhanced neurons (47%), these responses were comparable. The presence of neurons that respond maximally to single sounds at one PRR and to pulse-echo pairs with particular echo delays at other PRRs suggests that these neurons perform echo-ranging in conjunction with other biosonar functions during target pursuit.  相似文献   
2.
菊头幅出生后下丘听神经元反应特性的演化   总被引:14,自引:2,他引:12  
实验在出生后1周到6周的幼年和成年鲁氏菊头蝠(Rhinolophusrouxi)上进行。结果发现,出生第1周的动物下丘听神经元对超声刺激反应的最佳频率低,潜伏期长,阈值高。它们的平均值分别为:31.24±14.08千赫,16.56±3.83毫秒和74.24±6.22dB。同时,调谐曲线宽阔,Q10-dB值小,其均值为2.34±0.96。随着周令增长,上述特性逐渐改变。到第6周时,最佳频率的均值发展到70.16±19.16千赫,最佳频率分布峰值也移至75—85千赫的高频段,反应潜伏期均值降至8.12±1.86毫秒,阈值均值降至32.82±26.36dB,已出现相当多具有非常陡削调谐曲线的神精元,Q10-dB值在20以上者占到80%,有的高达100以上,已接近成年动物。  相似文献   
3.
As tropical forest fragmentation accelerates, scientists are concerned with the loss of species, particularly those that play important ecological roles. Because bats play a vital role as the primary seed dispersers in cleared areas, maintaining healthy bat populations is critical to natural forest regeneration. Observations of foraging bats suggest that many Neotropical fruit‐eating species have fairly general habitat requirements and can forage in many different kinds of disturbed vegetation; however, their roosting requirements may be quite different. To test whether or not general foraging requirements are matched by equally broad roosting requirements, we used radiotelemetry to locate roost sites of two common frugivorous bat species (Sturnira lilium and Artibeus intermedius) in a fragmented forest in southeastern Mexico. Sturnira lilium roosted inside tree cavities and selected large‐diameter roost trees in remnant patches of mature forest. Fewer than 2 percent of trees surveyed had a mean diameter equal to or greater than roost trees used by . S. lilium, Artibeus intermedius roosted externally on branches and vines and under palm leaves and selected roost trees of much smaller diameter. Compared to random trees, roost trees chosen by A. intermedius were closer to neighboring taller trees and also closer in height to these trees. Such trees likely provide cryptic roosts beneath multiple overlapping crowns, with sufficient shelter from predators and the elements. While males of A. intermedius generally roosted alone in small trees within secondary forest, females roosted in small groups in larger trees within mature forest and commuted more than three times farther than males to reach their roost sites. Loss of mature forest could impair the ability of frugivorous bats to locate suitable roost sites. This could have a negative impact on bat populations, which in turn could decrease forest regeneration in impacted areas.  相似文献   
4.
The bat fauna of 35 islands in a large lake in central Sweden were examined using ultrasound detectors. We tested the hypothesis that there is no difference in species number between the mainland and the island fauna. Eight species were found. Species numbers were analysed against island area, area of some habitats (coniferous forest, deciduous forest, semi-open habitats and open habitats), degree of isolation (distance from mainland and from stepping stones) and time spent searching for bats. Species number increased with area of deciduous forest. Presence of houses tended to increase species number. There seems to be a negative relationship between species number and degree of isolation (nearly significant). The results suggest that at least three species, Myotis brandti (Eversmann, 1845), M. mystacinus (Kuhl, 1819) and Plecotus auritus (Linnaeus, 1758), are negatively affected by forest patchiness. These species occurred mainly on large islands. Thus, the results do not support the hypothesis. The reasons why some species avoid open habitats are discussed.  相似文献   
5.
实验分别在出生后4周龄的幼年和成年鲁氏菊头蝠(Rhinolophusrouxi)上进行。使用移动声刺激装置,高频喇叭可在动物头部前方水平方向180度、垂直方向60度的范围内移动。玻璃微电极记录单个神经元的听反应。实验考察了幼年和成年动物下丘神经元的听空间特性,共观察了301个神经元,其中幼年动物148个,成年动物153个。结果表明,4周龄的幼年动物下丘听神经元已表现出方向敏感性,即每个听神经元均有一个特定的最佳反应中心和反应域。但神经元听反应中心在听空间的分布相当弥散,大多数位于对侧水平方向20—80度、垂直方向上下15度范围内。而成年动物听神经元反应中心的分布则相当集中,局限地分布于对侧水平方向28-50度,垂直方向0—10度范围内,两者构成明显差异。  相似文献   
6.
The Mediterranean Basin is a global biodiversity hotspot, hosting a number of native species belonging to families that are found almost exclusively in tropical climates. Yet, whether or not these taxa were able to survive in the Mediterranean region during the Quaternary climatic oscillations remains unknown. Focusing on the European free-tailed bat (Tadarida teniotis), we aimed to (a) identify potential ancient populations and glacial refugia; (b) determine the post-glacial colonization routes across the Mediterranean; and (c) evaluate current population structure and demography. Mitochondrial and nuclear markers were used to understand T. teniotis evolutionary and demographic history. We show that T. teniotis is likely restricted to the Western Palearctic, with mitochondrial phylogeny suggesting a split between an Anatolian/Middle East clade and a European clade. Nuclear data pointed to three genetic populations, one of which is an isolated and highly differentiated group in the Canary Islands, another distributed across Iberia, Morocco, and France, and a third stretching from Italy to the east, with admixture following a pattern of isolation by distance. Evolutionary and demographic reconstruction supports a pre-Last Glacial Maximum (LGM) colonization of Italy and the Anatolian/Middle East, while the remaining populations were colonized from Italy after the Younger Dryas. We also found support for demographic expansion following the Iberian colonization. The results show that during the LGM T. teniotis persisted in Mediterranean refugia and has subsequently expanded to its current circum-Mediterranean range. Our findings raise questions regarding the physiological and ecological traits that enabled species with tropical affinities to survive in colder climates.  相似文献   
7.
The relationship of telomere shortening and cellular ageing in cultured cells such as fibroblasts is straightforward: telomeres shorten with an increasing number of cell divisions until they trigger replicative senescence which prevents further mitotic cycles. But studies investigating the relationship between telomere shortening and ageing in whole organisms show contrasting results: while there is a clear decline in telomere length (TL) with chronological age in some species such as humans, no such decline is observed in others. In this issue of Molecular Ecology, Foley et al. (2020) show that experiencing harsh weather conditions correlates with longitudinal telomere shortening in the bat species Myotis myotis, whereas chronological age does not (Foley et al., 2020). Further, the authors investigated whether genetics influence TL and find a low heritability (h2 = 0.01–0.06) again suggesting that environmental effects are the dominant drivers of variation in TL in this species. These are important findings as there is disagreement in the literature about the relative magnitude of genetic and environmental effects contributing to TL variation in different species. This paper investigating the impact of environmental effects makes a novel and important contribution to the literature on TL in free‐living mammals.  相似文献   
8.
During the most recent decade, environmental DNA metabarcoding approaches have been both developed and improved to minimize the biological and technical biases in these protocols. However, challenges remain, notably those relating to primer design. In the current study, we comprehensively assessed the performance of ten COI and two 16S primer pairs for eDNA metabarcoding, including novel and previously published primers. We used a combined approach of in silico, in vivo‐mock community (33 arthropod taxa from 16 orders), and guano‐based analyses to identify primer sets that would maximize arthropod detection and taxonomic identification, successfully identify the predator (bat) species, and minimize the time and financial costs of the experiment. We focused on two insectivorous bat species that live together in mixed colonies: the greater horseshoe bat (Rhinolophus ferrumequinum) and Geoffroy's bat (Myotis emarginatus). We found that primer degeneracy is the main factor that influences arthropod detection in silico and mock community analyses, while amplicon length is critical for the detection of arthropods from degraded DNA samples. Our guano‐based results highlight the importance of detecting and identifying both predator and prey, as guano samples can be contaminated by other insectivorous species. Moreover, we demonstrate that amplifying bat DNA does not reduce the primers' capacity to detect arthropods. We therefore recommend the simultaneous identification of predator and prey. Finally, our results suggest that up to one‐third of prey occurrences may be unreliable and are probably not of primary interest in diet studies, which may decrease the relevance of combining several primer sets instead of using a single efficient one. In conclusion, this study provides a pragmatic framework for eDNA primer selection with respect to scientific and methodological constraints.  相似文献   
9.
10.
Sensitivity of bats to land use change depends on their foraging ecology, which varies among species based on ecomorphological traits. Additionally, because prey availability, vegetative clutter, and temperature change throughout the year, some species may display seasonal shifts in their nocturnal habitat use. In the Coastal Plain of South Carolina, USA, the northern long-eared bat (Myotis septentrionalis), southeastern myotis (Myotis austroriparius), tri-colored bat (Perimyotis subflavus), and northern yellow bat (Lasiurus intermedius) are species of conservation concern that are threatened by habitat loss. Our objective was to identify characteristics of habitat used by these species during their nightly active period and compare use between summer and winter. We conducted acoustic surveys at 125 sites during May–August and at 121 of the same 125 sites December–March 2018 and 2019 in upland forests, bottomland forests, fields, ponds, and salt marsh and used occupancy models to assess habitat use. The northern long-eared bat and southeastern myotis (i.e., myotis bats) used sites that were closer to hardwood stands, pine stands, and fresh water year-round. We did not identify any strong predictors of tri-colored bat habitat use in summer, but during winter they used bottomland forests, fields, and ponds more than salt marsh and upland forests. During summer and winter, northern yellow bats used sites close to fresh water and salt marsh. Additionally, during summer they used fields, ponds, and salt marsh more than upland and bottomland forests, but in winter they used bottomland forests, fields, and ponds more than upland forest and salt marsh. Our results highlight important land cover types for bats in this area (e.g., bottomland forests, ponds, and salt marsh), and that habitat use changes between seasons. Accounting for and understanding how habitat use changes throughout the year will inform managers about how critical habitat features may vary in their importance to bats throughout the year. © 2021 The Wildlife Society.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号